PHYSICAL REVIEW E

VOLUME 48, NUMBER 2

AUGUST 1993

Theoretical analysis of actual surfaces: The effect on the nematic orientation
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The effect of noise on the average orientation imposed by the surface treatment on the bulk properties
of a nematic liquid crystal is evaluated. The general solution of the elastic problem in terms of propaga-
tors is given. The analysis shows that a nonuniform easy axis requires a careful experimental determina-
tion of the anchoring energy, detected by means of optical methods. Several particular cases are ana-

lyzed in the strong- and weak-anchoring situations.

PACS number(s): 61.30.Gd, 68.10.Cr

I. INTRODUCTION

The physical description of nematic liquid crystals is
made by introducing a director field n. It coincides with
the average molecular orientation of the molecules form-
ing the phase. As it is well known [1], n defines the opti-
cal axis of the uniaxial nematic material. Because the
usual nematic liquid crystals are not ferroelectric n and
—n are equivalent. Only the direction of n is physically
meaningful. It follows that the physical properties of a
nematic sample depend on the spatial distribution of n.
The director can be written in terms of two polar angles
[2] ¢ and 3. In the event in which n is everywhere paral-
lel to a plane, it may be written in terms of one angle
only. According to the actual situation this angle is
called the tilt or twist angle [3].

To evaluate the director field n or ¢ and v, the basic
principle of the continuum theory is used. This principle
states that the actual vector field n has to be deduced by
minimizing the total elastic energy of the nematic sample.
The total elastic energy is a functional of n and contains
two terms. One is due to the elastic properties of the
nematic phase and it depends on the spatial derivatives of
n and eventually on the applied fields, and it is a bulk
term [4]. Another one, due partially to the direct interac-
tion between the surface and the nematic phase and to
the broken symmetry introduced by the presence of the
surface, which is a surface term [5].

In the absence of external fields n depends only on the
surface treatment. If a nematic slab is considered and the
surface treatment ensures uniform tilt or twist angle, in
the bulk, the tilt or twist angle is expected to depend only
on the distance of the point considered from the two lim-
iting plates. In this situation, by analyzing some physical
properties of the sample, as the optical transmittance or
the electric capacitance, it is possible to deduce informa-
tion on the elastic constants, anisotropies, or the surface
properties of the nematic phase [6—10]. Of course the
above-described situation is ideal in the sense that never
the surface treatment may ensure a perfect uniform
orientation of the director. Hence, in our opinion, it is
important to know the influence of the nonuniformity of
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the surface treatment on the experimentally detected
quantities as, for instance, the optical-path difference. In
the following we will show that the presence of inhomo-
geneity in the surface treatment could induce experimen-
talist to a wrong estimation of the surface energy.

Our paper is organized as follows. In Sec. II the gen-
eral equations governing the tilt angle are deduced and a
few important cases of surface misalignment discussed.
One of these cases is considered, as an example, in Sec.
III, in which the presence of a periodic fluctuation on the
average orientation is analyzed in details. In Sec. IV the
solution for the tilt angle is given in a general form in
terms of propagators. Other typical cases of surface
misalignment relevant to periodic fluctuation of surface
tilt angle around a mean value are considered in Sec. V,
where the strong and weak situations are analyzed. In
Sec. VI, the case in which the surface fluctuation around
the average tilt angle is a stochastic function is studied,
and the physical consequences are evaluated. The main
conclusions of our paper are reported in Sec. VII.

II. GENERAL EQUATIONS

Let us consider a nematic slab of thickness d. The
Cartesian reference frame is chosen with the z axis nor-
mal to the bounding plates, located at z ==+d /2. The x
axis is parallel to the direction along which the surface
tilt angle is expected to change. In the following, we sup-
pose that the tilt angle ¢, made by the nematic director
with the z axis, is y independent (Fig. 1). In the one con-
stant approximation K, =K, the bulk energy density
due to the elastic distortion is [2] f, =1K (V¢)?, where
Vé=1i(3¢/0x)+k(d¢/3z). i and k are the unit vectors
parallel to the x and z axes, respectively. We consider, in
our paper, the effect of the surface on the orientation of
the nematic liquid crystal. The surface energy will be as-
sumed to be of the kind proposed by Rapini and Papoular
[11], i.e., f,=(W/2)(¢—D)®. In the previous formula,
W is the anchoring strength and @ the easy direction im-
posed by the surface [11]. The strong-anchoring case
corresponds to W —> 0. In this frame, the total energy of
the nematic sample, per unit length along the y axis, is
given by the functional
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FIG. 1. A nematic-liquid-crystal sample in an antisymmetric
arrangement. The actual easy direction, characterized by
strong anchoring, is assumed to be a periodic function of x of
wavelength A and amplitude ¢,. The x dependence of the tilt
angle ¢ disappears for |z —d /2| of the order of a few A. ¢ is
the experimentally detected easy axis, whereas @, is the actual
macroscopic tilt angle. L is the measured effective extrapola-
tion length. In this case the local extrapolation length is zero
(due to the strong-anchoring hypothesis).

Flé(x,2)]
_ + o0 +d/2 1 2
J Jax [T dziK(V4)
+f LW _[p_(x)—D_(x)]
+W o [ (x)—D (x)]*}dx . (1)

In (1) the first term represents the bulk contribution,
whereas the second one the surface contribution. In (1)
¢t(x)=¢(x,£td /2), i.e.,, ¢Et(x) are the actual values of
the tilt angle at the boundaries z ==+d /2. Furthermore,
@, (x) are the easy tilt angles characterizing the lower
(—) and upper (+) surface. The director profile, or the
function ¢(x,z), is deduced by imposing that the actual
deformation minimizes the total elastic energy given by
(1). By minimizing (1), standard calculations [12] give

—Q+——Q =0, —o<x<® _152<i (2)

ax? 3z’ o272
for the bulk equation and
+r |9 Fho(x)— D4 (x)=0 3)
97 |,_syn

for the boundary conditions. In (3) L =K /W is the so-
called extrapolation length [13]. In the case of strong an-
choring L =0, the boundary conditions (3) reduce to

¢ (x)=D,(x), 4)

as expected. The nematic orientation inside the sample is
then the solution of Eq. (2) satisfying boundary condi-
tions (3) or (4). When ¢(x,z) is known, the physical prop-
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erties of the nematic sample can be deduced. In the case
in which a linear polarized beam impinges normally on
the nematic sample, the optical path difference Al be-
tween the ordinary and extraordinary ray is given by
+A/2 +ds2,
¢)dx dz =1n, Rd{¢?) ,
f——A/Z f d/2 z=3n,Rd (4%

where

2y +A/2 +d/2
(¢%) dA xR adx dz (5)
is the average square tilt angle, evaluated over a typical
length A, characterizing the x variation of the surface tilt
angle. Furthermore, R =1—(n,/n,)? and n, and n, are
the ordinary and extraordinary refractive indices, respec-
tively. We point out that the analysis of the nematic
properties is usually performed by means of an optical
method in which the optical path difference is used to
deduce the actual surface nematic orientations. When
the surface orientations are known it is possible [10] to
measure the anchoring energy.

Typical important cases of surface misalignment are
the following.

) ¢_(x)=¢(x)=¢y+ A cos(gx) ,

representing two surfaces whose easy axis is a simple
periodic function of x, of wavelength A=21 /g, around ¢,
of amplitude 4. ¢, can be considered as the average easy
axis. Case (i) is relevant to a sample made of two surfaces
of the same kind perfectly in phase. We note that in the
case of A4 =0 the tilt angle inside the sample is expected
to be constant and equal to ¢,,.

(i) ¢_(x)=¢y+ A cos(gx) ,
¢ (x)=¢y+ A4 cos(gx +8)

similar to the preceding case, but in which the surfaces
are out of phase of 8.

(iii) ¢ _(x)=—¢y— A4 cos(gx) ,
¢ (x)=¢,+ A cos(gx +8) ,

which refer to two surfaces in “‘antisymmetric’ arrange-
ment, perfectly in phase for §=0. In this case, important
for practical application, for 4 =0, and strong anchor-
ing, ¢(x,z) is expected to be ¢(x,z)=2¢yz /d.

(iv) {$.(x)) =4y,
(P_(x)p_(x"))=(¢ . (x)$,(x")) = AK(x —x")
(¢_(x)p(x"))=0,

representing two surfaces characterized by an average
orientation equal to +¢, varying in a stochastic manner
along x. In (iv), A4 is the amplitude of the stochastic vari-
ation and K (x —x') the autocorrelation function.

III. ANALYSIS OF A PERIODIC NOISE
ON THE NEMATIC ORIENTATION

As an example, let us consider the case (i) of the
preceding section in the strong-anchoring situation
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(W —o,L—0). As it is easy to show, solution of Eq. (2)
satisfying boundary conditions (4) for the present case is

cosh(gz)
cosh(qd /2) °

Consequently, according to (5) the average square tilt an-
gle is

($(x,2)) =¢§+(Ad?)

where

d(x,z)=¢,+ A cos(gx) (6)

1+ sinh(qd)
54 cosh?(gd /2) ’

In (7) the subscript S means that we are considering the
strong-anchoring case. In the following the subscript W
will be used when the weak anchoring is analyzed. It fol-
lows that the [{¢*(x,z)) —¢3] introduced by the fluctua-
tions of the easy tilt angle is given by (A¢?)g, whose trend
versus d is shown in Fig. 2. From Fig. 2 one deduces that
the influence of the fluctuations is important for gd ~1,
i.e., for A~d. The two important limits for very large
and very small thickness of the sample are gd — o,
(A¢?)s=0 and gd —0, (Ad*)g= A%/2.

The symmetric situation considered above in the case
of weak anchoring gives for ¢(x,z) an expression similar
to (6) in which A4 is replaced by A'=A4/
[1+gL tanh(gd /2)]. Consequently, for the weak-
anchoring case (A¢?), =(Ad?)g/[1+¢L tanh(gqd /2)]?,
showing that not only d but also L has to be compared
with g (see Fig. 2).
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FIG. 2. (a) (A¢?)s/ A? in the strong anchoring case (L =0)
vs gd. Note that for gd ~ 1, (A¢*)s/ A*~0.42, and for gd — =,
(A¢?)s/ A*>—0. The effect of the surface fluctuations of the
easy axis is negligible for large thickness of the sample. The
curve refers to a situation in which ¢=0.5 um~'. (b)
(A¢*>)y/A* in the weak anchoring case. For large d,
(A¢?)y ~(Ad?)s/(1+¢gL)%. The curve is drawn for g =0.5
pum 'and L =1 pm.

IV. GENERAL SOLUTION
OF THE ELASTIC PROBLEM

The other cases reported (ii) and (iii) can be analyzed in
a way similar to the one reported in the preceding sec-
tion. However, in order to study the influence of a sto-
chastic variation of ®,(x) on {$?(x,z)), it is necessary to
develop a general theory giving ¢(x,z) in terms of @ (x).
As it is well known, this can be accomplished by intro-
ducing the propagator relevant to Eq. (2) and boundary
conditions (3) or (4), according to the weak- or strong-
anchoring case. In the strong-anchoring case this prob-
lem is called Dirichlet’s problem, whereas in the case of
weak anchoring it is termed mixed Dirichlet-Neumann’s
problem [14].

By expanding ¢(x,z), in terms of plane waves along x,
we have

d’(x’Z): fj-w[a(k)eikx+kz+ﬁ(k)eikx—kz]dk , (8)

where a(k) and B(k) have to be determined by using the
boundary conditions

D, (x)=¢ , 9)

d
+
x’2

where ¢.(x) are the actual values of ¢(x,z) at the boun-
daries. They will coincide with @, (x) only in the
strong-anchoring case. By substituting (8) in (9) and us-

ing the orthonormality of the set {e’**} we obtain
Io=-1 [T e~ %4 (x)dx
- 27 Y —w -
:a(k)eik(d/2)+B(k)e?k(a'/Z) , (10)
giving
I ekdd_p o=k
2 sinh(kd) 1
I ek o=k (1D
Blk)= :
2 sinh(kd)

By substituting (11) in (8) one has
¢(x,z)=f_+wdx’[G+(x —x",z)p(x")

+G_(x —x",z)p_(x")}, (12)
where
, +0 ix—xnsinh[k(z+d /2)]
_ =+ ik(x —x")
Gulx —x"2)=+ [ "e sinh(kd) ¢

(13)

The integral present in (13) can be easily performed, giv-
ing for the propagators

cos | =z
1 d
G, (x —x',z)=%—
- 2d - -
cosh |—(x —x') | Fsin |—z
d d

(14)
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Equation (12), taking into account (14), gives the general
solution of the harmonic problem in terms of the actual
values of the functions at the boundaries. In the strong-
anchoring case, according to (4), the solution of our prob-
lem is

p(x,2)= [ Tdx'{G4(x —x',2)P . (x")

+G_(x —x',2)®_(x")} . (15)

On the contrary, in the weak-anchoring case (12) has to
be substituted in (3), giving

. G L (x —x',z)
iLf_+ dx’ ¢+(x')—*i“r
G _(x —x',z)
oz 2=+d/2

=@, (x). (16)

+é_(x")

Equation (16) constitutes a system of two coupled
Fredholm’s integral equations in ¢ (x) [14]. In the case
in which W is strong enough, and hence L is a small
quantity (with respect to the sample thickness and the
wavelength of the surface structure), system (16) can be
solved by successive approximation. At the first order in
L, the solutions are

qbi(x)”—*dh_(x)

® oG, (x —x',z)
L [ Tax |0 ()

aG _(x —x',z)
+o_(x')—F—

oz 2=%d/2

(17)

At this point the problem is formally solved. In Sec.V,
we will apply the general formalism to investigate the
cases (ii)—(iv) listed at the end of Sec. II.

V. PARTICULAR CASES

Let us now consider the case (ii) of Sec. IT in which the
“symmetric” case is out of phase of 6. In the strong-
anchoring case, Eq. (15) gives

- A - a_
d(x,z)=¢y+ sinh(gd) {smh q z | |cos(gx)
+sinh |g —g-+z
X cos(gx +8)l , (18)

which reduces obviously to the previous one in the case
of 8=0. Simple calculations give for (A$?)g the expres-
sion
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) cos(8) [1+2sinh a5 -1
(ag2)g=—
4 cosh? q% 2 sinh? q%
sinh(gd) cosh(gd)—cosd
+ , 19
X1 qd cos(d)cosh(gd)—1 19

whose trend is shown in Fig. 3. In the case in which the
anchoring is weak, the solution of our problem is

cos | > cosh(gz)cos |gx +%
¢(X,Z) = ¢0 + A
L sinh d +cosh d
q q 2 q 2
. . . o)
sin | = |sinh(gz)sin |gx + >
gL cosh q% +sinh q% ]
(20)
from which
0.20
0.8
"<
< oo
(b)
0.05 T
(a)
o T T T T T
o n/a nif2 arfa m

Phase angle &

FIG. 3. (a) The effect of the phase on (A¢?)s for the “symme-
trical” arrangement in the strong anchoring case for
qg=0.5um™! and d =4 um. (b) The effect of the phase on
(A¢?)y in the weak anchoring case for ¢ =0.5 um~!,d =4 um,
and L =1 um.
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cos? |2 | |14 Sinhigd)
A 2 2 qd
(AP?) = e 2
L sinh d +cosh d
q q ) q b}
sin? g —1+ Sm};;qd)
+ 5|
gL cosh q% ~+sinh q% ]

(21)

showing again, that g has to be compared not only with
d, but also with L (Fig. 3).

The case (iii) of antisymmetric period axis, connected
to 6=0, for the strong-anchoring case, is characterized
by a profile of tilt angle of the kind

2¢0z

d(x,z)= d + A4

sinh(gz)

cos(gx) . (22)

sinh q%

In the case in which 4 =0 we obtain the profile well
known in the literature

2¢z
¢, (z)= 4 (23)
In the uniform case (23), trivial calculations give
(¢2)=143. (24)

In the general case, by using (22) one obtains

o2

(a)
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Xy

0.06

Thickness d(pm)

FIG. 4. (a) (A¢?)y / A? vs d for the “antisymmetric” arrange-
ment in the strong anchoring situation (g =0.5 um™!). (b)
(A¢*)y /A% vs d for the antisymmetric arrangement in the
weak-anchoring situation ¢ =0.5 um ™~ 'and L =1 um.

sinh(qd)
qd
cosh(gd)—1 ’

—1+

(A¢2)S=<¢2>—<¢ﬁ>=ATZ (25)

shown in Fig. 4. To complete the investigation of this an-
tisymmetric arrangement, characterized by &§=0, it
remains to evaluate the situation in which the anchoring
is weak. In this case Egs. (15) and (17) give again expres-
sion (22), where instead of ¢, and 4 we have to replace ¢,
and 4 with

~ 1

Fo= 51 o 26)
and
A= 4 , (27)
1+gL coth q%

(A#?)y can be straightforwardly evaluated and it is

found to be
lz
and it is shown in Fig. 4.
The antisymmetric case out of phase of § is described,
in the strong anchoring case, by a profile tilt angle given
by

(Ag?)s

(Ap?) = (28)

1+4gL coth

d
)

030
0.2s
020
(a)
~N
§ 0454
o~
S
<
0.101
X1}
(b)
[ v v v
o Tje nj2 3mje n

Phase angle &

FIG. 5. (a) (A¢*)/ A? vs the phase & for ¢ =0.5 um ™' and
d =4 um. (a) Strong-anchoring case; (b) weak-anchoring case
(L =1pm).
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2 . . d
¢(x,z):$+—sinlﬁw —sinh |gq %——z cos(gx)-+sinh |g E+z cos(gx +8)J. (29)
Consequently,
—[1+cos(8)cosh(gd)] + —7— sinh(gd) [cosh(gqd)+cosb]
A2
(Ap?)s= 9d (30)

2[cosh(gd)—1]

1+cosh(gd) ’

which reduces to (25) when §=0. This case, in the weak-anchoring situation, is characterized by a tilt angle of the kind

cos | |sinh(gz)cos |gx + L) sin | = [cosh(gz)sin [gx + L
2¢yz 2 2 2
d(x,z)= + A (31)
d+2L d d d
gL cosh a5 +sinh 'y gL sinh a5 +cosh |g—
from which one obtains for (A¢?),, the expression
2 cos? LI - 1+ sinh(gd) sin? L) 1+ sinh(gd)
5 1,5 d A 2 qd 2 qd
A7) = 7 %o +— 7t 7| (32)
3 d+2L 4 d qd d d
gL cosh q; +sinh |~ gL sinh qz +cosh q;
[
shown in Fig. 5 (apart from a constant factor). To com- it is possible to extend the integration by supposing

plete our analysis, in Sec. VI a random fluctuation around
the mean value will be considered.

VI. EFFECT OF RANDOM
EASY AXIS FLUCTUATIONS
ON THE BULK PROPERTIES

In this section the effect of a random fluctuation is ana-
lyzed. First the case of strong anchoring will be con-
sidered. In this situation the actual tilt angle is given by
the general expression (15). Let us consider the sym-
metric situation in which &, (x')=¢,+e€,(x’') where
€.(x) will be assumed a random functlon By using (15)
the average along x of ¢2(x,z) is given by

($x,2)) :_fA/2

:¢(2)+ij: fj:gij(x

Xej(x

x",z)e;(x")

")dx'dx" (33)
where the new propagators are defined as

A2
gi{x"'—x",z)= f_A/zG,(x’—x,z)Gj(x”—x,z)dx

=g;(x"—x",z) (34)

and they are explicitly evaluated in the Appendix. In or-
der to save space, in (33) and in the following, we use the
summation convention and put i =+, —. Because the
integrand in (34) is strongly decreasing when x increases,

A— . In this way the propagator (34) is completely
deﬁned Let us suppose  now that (¢;(x’))=0,
(€;(x e (x"+s) ))=4 K (5)8,;, where the averages are
evaluated over the typical scale A, and A is the max-
imum amplitude of e(x). K(s) is the autocorrelation
function and we suppose that the orientations on the two
surfaces are uncorrelated, as already pointed out in Sec.
II. In this frame, one obtains for the second and third
terms appearing in (33), after the substitution x"'=x"+s,

1 © ©
Xf_wf_wgtj(x
=/

=A%, f_ wK(s)g,-j(s,z)ds

x",z)€;(x")e;(x" )dx"dx""

Cdsgyls,2) [+ [T elx e (" s

It follows that

(Fx,2)=$3+ 4> [ K ()G, (s)ds (35)
where

~ \_1 par

Gus)=— [ guls,2)dz (36)

is the average along z of the new propagator defined in
(34). In the case in which K (s)=A&(s) (white noise [15]),
the integration appearing in (35) can be easily performed
giving,

(Ap*)=A A%G,;(0) . (37
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The other case, in which ®,(x)=x¢,te (x), called
before the antisymmetric arrangement, can be analyzed
in the same way. The final result in the strong-anchoring
situation is

(Px,2)) =13+ 42 [ K ()G, (s)ds , (38)

which, in the case of white noise, is written again in the
form (37). The case of weak anchoring can be treated in
a similar way by using Eq. (17), but it will not be analyzed
here because the calculations are very ponderous and
they do not add any new physical information.

In order to show the importance of the results obtained
in this section, we discuss now the physical consequences
of the noise on the easy axis on the experimental observa-
tions. Let us consider an experimental situation in
which, by means of an optical technique, an experimen-
talist tries to determine the anchoring energy as described
in [16]. Let us suppose that the surface treatment ensures
an orientation of the kind ®,(x)=¢,+e€.(x) character-
ized by strong anchoring. In order to detect ¢, the ex-
perimentalist has to put the surface in symmetric ar-
rangement. As shown before, in this manner the experi-
mentalist measures, by means of the optical path
difference, the quantity

(P2 n(%,2)) =5+ (AP?) g, = b0 (39)
where(Ag?), as follows from Eq. (35), is given by
(Ap*)= A4 ij “K (5)G;(s)ds . (40)

When one puts the surfaces in antisymmetric arrange-
ment the measured quantity is

($2i(x,2)) =13+ (AP?) i =10 41)
giving
o =[#5+3(Ad?),0s]"%, 42)

in which (A¢?),,;=(A¢?)m, in the case considered (see
above). The connection between ¢, d, and the anchoring
energy is [16]

§=d0/

where L is connected to the apparent anchoring energy.
By using (39) and (43) one obtains

1+2£

d (43)

(AP )y (A )gnsi | ]
1+2 | L |= l1+~¢2—y]/‘1+3#H ,
d 5 5
(44)
giving
(D) gym (AP
i I
0 0

if (A¢?)/¢%<<1. Equation (44) shows that a random
fluctuation of the easy axis can be interpreted as a weak-
anchoring situation, although the true anchoring is
strong. The calculations performed above in the general

case for an easy axis varying along x in stochastic way
hold for (A¢?)/¢3<<1. The same analysis, relevant to a
simple periodic variation of the easy axis along x, can be
done by using Egs. (39) and (41) in which (A¢2)Sym and
(A¢?),m are given by (7) and (25), respectively. In this
manner, Eq. (44) gives for the apparent extrapolation
length, the expression

14+ sinh(qd) i
1_+_l A qd
4 |
° ) cosh? ~qz£
L=yd h(gd) I
_ sinh(q
1+l 4 2 —1+ od
4 | 9o Y
i a
sinh® |¢~
(46)

valid in general. The trend of L /d vs d for this case is
drawn in Fig. 6 for different values of (4 /¢,)%. Note
that for gd—0 and (4 /¢,)>~1, this equation gives
L /d —0, in agreement with the general formula (45). In
the case of white noise, Eq. (45) becomes

L 1

L__ L, 25
S=— 5 A4G,(0) . @7

0.03

002

-L(d)/ d

0.0!

[¢] HeJ 20 30 4o S0 60 70 80 90 o0

Thickness d(pm)

FIG. 6. Trend of —L (d)/d vs d for a sample characterized
by two surfaces in antisymmetric arrangement perfectly in
phase with easy axis varying in a simple periodic way having
strong anchoring for a = A4 /$,=0.5,0.8,1.0. Note that for
d—0, L/d—0, and for d — o, L /d—0. The two limits are
easily understood. In fact, if d <<g, the local orientation de-
pends only on the surface, which can be considered uniform. In
the other limit, since the nonuniformity is completely lost, the
anchoring is strong again.
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In order to have an idea about the order of magnitude of
the estimated extrapolation length, we note that
G,;(0)al/d (as shown in the Appendix) or, more precise-
ly, G;(0)d =1/27. Hence L/A=— A?/4x. Tt follows
that, as expected, L is of the order of the “periodicity’” of
the easy axis along x.

VII. CONCLUSIONS

The effect of a fluctuation of easy axis imposed by a
surface treatment on the bulk properties of a nematic
liquid crystal has been evaluated. Our analysis, per-
formed in the cases of strong and weak anchoring has
shown that a surface fluctuation in the average orienta-
tion may be interpreted as a weak anchoring, even in the
case in which the surface treatment is characterized by
strong anchoring. We have analyzed several cases, im-
portant from a practical point of view. The effect is usu-
ally important in all the situations in which the surface
periodicity is comparable with the thickness of the sam-
ple. Consequently, before detecting experimentally the
surface energy, the experimentalists have to estimate the
surface periodicity of the surface tilt angle; otherwise
their results have to be reanalyzed. In our paper we have
supposed that the wavelength of the surface periodicity is
very large with respect to the nematic coherence length.
If this condition is not fulfilled, it is no longer possible to
employ the elastic energy written in the simple Frank
form and the analysis is much more complicated [17].
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APPENDIX

The propagator g, , is defined by (34). In order to
evaluate the integral appearing in that expression, let us
put

a=1lcosh(2u)+sin’v, B=2sin(v)cosh(u)

where u =(7/d)(x'"—x"") and v=(7/d)z. In this way,
g+ 1 (u,v) can be rewritten as

cos’v p+e d&
47Td —©

g4+ (u,v)=
a+ %coshg—[o’ cos%

where £=2(m/d)x. The integration in the above formula
may be performed in elementary way [18]. The final re-
sult is

—2sin(v)sinh(u)h (u,v) ] ’

sin?(2v)+ (2 cos*v+e ~ 2 —
2 sin(2v)

g ()= cosv
M 8md sinh(u)[cos*(v)cosh?u +sin?(v)sinh?u]
2 2 2u__1y2
X jcos(v)cosh(u)ln SH; (2v)+(200§ v+e_2 D

sin®(2v)+(2 cos’v+e 724 —1)?

where
102 2 2u__1\2
huv)= 1 [tan—1 | S0 (2v)+(2'cos vte 1) +tan~!
2 sin(2v)

The function g , , is strongly peaked around u =0.

7|
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